

Abstracts

Analysis of Nonlinear Termination Networks for Coupled Lossy and Dispersive Transmission Lines (Short Papers)

G.W. Pan, G. Wang and B.K. Gilbert. "Analysis of Nonlinear Termination Networks for Coupled Lossy and Dispersive Transmission Lines (Short Papers)." 1993 Transactions on Microwave Theory and Techniques 41.3 (Mar. 1993 [T-MTT]): 531-535.

Based upon an algorithm described in a separate paper, multiple transmission lines with skin effect losses and dispersive characteristics were analyzed by the volume equivalent principle, and the scattering matrix $[S \omega]$ and characteristic impedance matrix $[Z_{0/\omega}]$ of the transmission lines were obtained. The $[S \omega]$ and $[Z_{0/(\omega)}]$ were then transformed by the inverse FFT into the time domain. The scattering matrix representation is multiplicative in nature, which leads to the time domain formulation as a set of convolution integrals. Instead of attempting to solve a set of coupled convolution integral equations by the multivariable Newton-Raphson method, which may occasionally be unstable, we generated a set of object functions and applied a multivariable optimization technique, referred to as the modified Levenberg-Marquardt algorithm, to attain the solutions. The new method, which is quite general, reduces to the special cases derived in many previous publications.

[Return to main document.](#)